IrDA Infrared Communication Module RPM972-H14

RPM972-H14 is an infrared communication module for IrDA Ver. 1.4 (Low Power). The infrared LED, PIN photo diode, and waveform shaping LSI are all integrated into one single package. This module is designed for low power consumption. The very small package makes it a perfect fit for mobile devices.

Also it provides the capability of IR remote control transmission for universal remote control applications.

Features

- 1) Infrared LED, PIN photo diode, LED driver and receiver frequency formation circuit built in. Improvement of EMI noise protection by Shield Case.
- 2) Applied to SIR (9.6k to 115.2kbps), MIR (0.576M, 1.152Mbps) and FIR(4Mbps).
- 3) Surface mount type.
- 4) Power down function built in.
- 5) Adjustable communication distance by LED load resistance value.
- 6) Infrared remote control transmission driver built-in.

Applications

Cellular phone, PDA, DVC, Digital still camera, Printer, Handy terminal etc.

● Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc/VLEDA/VIO	6.5 * ¹	V
Input voltage	Vin(3,4,5pin)	-0.3 to Vio+0.3	V
Operation temperature	Topr	-25 to 85	°C
Storage temperature	Tstg	-30 to 100	°C

^{*1)} This applies to all pins basis ground pin (8pin).

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
	Vcc	2.4	3.0	3.6	V
Supply voltage	VLEDA	2.7	3.0	5.5	V
	Vio	1.7	3.0	Vcc	V

Terminal description

Pin No	Terminal	Circuit	Function
1	LEDA	1 D LED 2	LED Anode Terminal LED drive power supply. Other power source can be used difference between LEDVcc and Vcc.
2	LEDC	۲'	LED Cathode Terminal
3	TXD	Vio ↓ Vio ↓ § 600k	Transmitting Data Input Terminal H:LED radiant (PWDOWN='L') CMOS Logic Level Input. Holding TXD="H"status, LED will be turn off approximately 48 μs.
4	RXD	VIO PWDOWN	Receiving Data Output Terminal When PWDOWN(5pin)='H', the RXD output will be pulled up to V_{10} at approximately 300 k Ω .
5	PWDOWN /Mode	Vio W	Power-down Control and Mode SettingTerminal H: POWERDOWN L: OPERATION CMOS Logic Level Input. When input is "H", it will stop the receiving circuit, Pin–PD current and transmitting LED operation.
6	Vcc		Vcc Supply voltage for Transceiver circuits.
7	Vio		Vio Supply voltage for I / O pins (PWDOWN,RXD,TXD).
8	GND		GROUND
	Shield Case		Connect to Ground.

$\bullet \textbf{Electrical characteristics} \text{ (Unless otherwise noted, Vcc=3V, VLEDV}_{\text{CC}} = 3\text{V, VIO} = 3\text{V, VI$

Parameter Symbol Min. Typ. Max. Unit Conditions Consumption current 1(SIR / MIR mode) Icc1 400 800 1600 μA PWDOWN=0V, At no input light Consumption current 2(FIR mode) Icc2 400 1000 1600 μA PWDOWN=0V, At no input light Consumption current 3(at PWDOWN) Icc3 - 0.01 0.2 μA PWDOWN=Vo, At no input light Transmission rate 0.0096 - 4 Mbps PWDOWN input high voltage VPDH 2/3*V₁o - V₁o V V₁o=1.7 to 3.6 V V PWDOWN input low voltage VPDL 0 - 1/3*V₁o V V₁o=1.7 to 3.6 V V Voi>							<u> </u>
Consumption current 2(FIR mode) Icc2 400 1000 1600 μA PWDOWN=0V, At no input light Consumption current 3(at PWDOWN) Icc3 - 0.01 0.2 μA PWDOWN=0V, At no input light Transmission rate 0.0096 - 4 Mbps PWDOWN input high voltage VPDH 2/3*Vio - Vio V Vio=1.7 to 3.6 V PWDOWN input low voltage VPDL 0 - 1/3*Vio V Vio=1.7 to 3.6 V PWDOWN input low current IPDH -1.0 0 1.0 μA PWDOWN=Vio PWDOWN input low current IPDL -1.0 0 1.0 μA PWDOWN=0V < Transmitter > TXD input high voltage VTXH 2/3*Vio - Vio V Vio=1.7 to 3.6 V TXD input low voltage VTXL 0 - 1/3*Vio V Vio=1.7 to 3.6 V TXD input low current ITXH 2.5 5 10 μA TXD=Vio TXD input low current ITXL<	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Consumption current 3(at PWDOWN) Icc3 — 0.01 0.2 μA PWDOWN=V _{IO} , At no input light Transmission rate 0.0096 — 4 Mbps PWDOWN input high voltage VPDH 2/3*V _{IO} — V _{IO} V V _{IO} =1.7 to 3.6 V PWDOWN input low voltage VPDL 0 — 1/3*V _{IO} V (V _{IO} ≤ V _{CC}) PWDOWN input low current IPDH —1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL —1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL —1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL —1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL —1.0 0 1.0 μA PWDOWN=V _{IO} TXD input low voltage VTXL 0 — 1/3*V _{IO} V V _{IO} =1.7 to 3.6 V TXD input low current ITXH 2.5	Consumption current 1(SIR / MIR mode)	Icc1	400	800	1600	μΑ	PWDOWN=0V, At no input light
Transmission rate 0.0096 - 4 Mbps PWDOWN input high voltage VPDH 2/3*Vio - Vio V V _{IO} =1.7 to 3.6 V PWDOWN input low voltage VPDL 0 - 1/3*Vio V (Vio ≤ Vcc) PWDOWN input low current IPDH -1.0 0 1.0 μA PWDOWN=Vio PWDOWN input low current IPDL -1.0 0 1.0 μA PWDOWN=OV **Transmitter > **** **TXD input high voltage VTXH 2/3*Vio - Vio V V _{IO} =1.7 to 3.6 V TXD input low voltage VTXL 0 - 1/3*Vio V (Vio ≤ Vcc) TXD input low voltage VTXL 0 - 1/3*Vio V (Vio ≤ Vcc) TXD input low current ITXH 2.5 5 10 μA TXD=Vio TXD input low current ITXL -1.0 0 1.0 μA TXD=OV LED anode current ILED1 180 250 300 </td <td>Consumption current 2(FIR mode)</td> <td>Icc2</td> <td>400</td> <td>1000</td> <td>1600</td> <td>μΑ</td> <td>PWDOWN=0V, At no input light</td>	Consumption current 2(FIR mode)	Icc2	400	1000	1600	μΑ	PWDOWN=0V, At no input light
PWDOWN input high voltage VPDH 2/3*V _{IO} - V _{IO} V V _{IO} =1.7 to 3.6 V V _{IO}	Consumption current 3(at PWDOWN)	Icc3	_	0.01	0.2	μΑ	PWDOWN=V ₁₀ , At no input light
PWDOWN input low voltage VPDL 0 − 1/3*V _{IO} V (V _{IO} ≤ V _{CC}) PWDOWN input high current IPDH −1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL −1.0 0 1.0 μA PWDOWN=0V < Transmitter > TXD input high voltage VTXH 2/3*V _{IO} − V _{IO} V V _{IO} =1.7 to 3.6 V TXD input low voltage VTXL 0 − 1/3*V _{IO} V (V _{IO} ≤ V _{CC}) TXD input low voltage VTXL 0 − 1/3*V _{IO} V (V _{IO} ≤ V _{CC}) TXD input low current ITXH 2.5 5 10 μA TXD=V _{IO} TXD input low current ITXL −1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} –0.4 − V _{IO} V IRXH= –200μA RXD output low voltage	Transmission rate		0.0096	-	4	Mbps	
PWDOWN input high current IPDH −1.0 0 1.0 μA PWDOWN=V _{IO} PWDOWN input low current IPDL −1.0 0 1.0 μA PWDOWN=0V < Transmitter > TXD input high voltage VTXH 2/3*V _{IO} − V _{IO} V V _{IO} =1.7 to 3.6 V TXD input low voltage VTXL 0 − 1/3*V _{IO} V (V _{IO} ≤ V _{CC}) TXD input low voltage VTXL 2.5 5 10 μA TXD=V _{IO} TXD input low current ITXL −1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} -0.4 − V _{IO} V IRXH= -200μA RXD output low voltage VRXL 0 − 0.4 V IRXL=200μA	PWDOWN input high voltage	VPDH	2/3*Vio	-	Vio	V	V _{IO} =1.7 to 3.6 V
PWDOWN input low current IPDL −1.0 0 1.0 μA PWDOWN=0V < Transmitter > TXD input high voltage VTXH 2/3*V₁₀ − V₀ V l₀=1.7 to 3.6 V TXD input low voltage VTXL 0 − 1/3*V₁₀ V (V₁₀≤ Vcc) TXD input high current ITXH 2.5 5 10 μA TXD=V₁₀ TXD input low current ITXL −1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V₁₀=0.4 − V₁₀ V IRXH= −200μA RXD output low voltage VRXL 0 − 0.4 V IRXL=200μA	PWDOWN input low voltage	VPDL	0	-	1/3*Vio	V	(Vio≤Vcc)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PWDOWN input high current	IPDH	-1.0	0	1.0	μΑ	PWDOWN=V _{IO}
TXD input high voltage VTXH 2/3*V₁₀ - V₀ V l₀=1.7 to 3.6 V TXD input low voltage VTXL 0 - 1/3*V₁₀ V (Vᵢ₀≤ Vcc) TXD input high current ITXH 2.5 5 10 μA TXD=V₁₀ TXD input low current ITXL -1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH Vᵢ₀=0.4 - Vᵢ₀ V IRXH=-200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	PWDOWN input low current	IPDL	-1.0	0	1.0	μΑ	PWDOWN=0V
TXD input low voltage VTXL 0 - 1/3*V _{IO} V (V _{IO} ≤Vcc) TXD input high current ITXH 2.5 5 10 μA TXD=V _{IO} TXD input low current ITXL -1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} -0.4 - V _{IO} V IRXH= -200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	< Transmitter >						
TXD input high current ITXH 2.5 5 10 μA TXD=V _{IO} TXD input low current ITXL -1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} -0.4 - V _{IO} V IRXH= -200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	TXD input high voltage	VTXH	2/3*Vio	-	Vio	V	V _{IO} =1.7 to 3.6 V
TXD input low current ITXL -1.0 0 1.0 μA TXD=0V LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} -0.4 - V _{IO} V IRXH= -200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	TXD input low voltage	VTXL	0	_	1/3*Vio	V	(Vio≤Vcc)
LED anode current ILED1 180 250 300 mA < Receiver > RXD output high voltage VRXH V _{IO} -0.4 - V _{IO} V IRXH= -200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	TXD input high current	ITXH	2.5	5	10	μΑ	TXD=V _{IO}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TXD input low current	ITXL	-1.0	0	1.0	μΑ	TXD=0V
RXD output high voltage VRXH Vio-0.4 - Vio V IRXH= -200μA RXD output low voltage VRXL 0 - 0.4 V IRXL=200μA	LED anode current	ILED1	180	250	300	mA	
RXD output low voltage VRXL 0 - 0.4 V IRXL=200µA	< Receiver >						
	RXD output high voltage	VRXH	Vio-0.4	_	Vio	V	IRXH= –200μA
RXD output rise time tRR _ 20 _ ns CL-15nF	RXD output low voltage	VRXL	0	-	0.4	V	IRXL=200μA
1770 Output 136 tille 1171 - 20 - 113 OL-13PF	RXD output rise time	tRR	_	20	_	ns	CL=15pF
RXD output fall time tFR - 20 - ns CL=15pF	RXD output fall time	tFR	-	20	-	ns	CL=15pF
RXD output pulse width(SIR) twRXDS 1.0 2.3 4.0 μs C _L =15pF, 9.6k to 115.2 kbps, duty19%	RXD output pulse width(SIR)	twRXDS	1.0	2.3	4.0	μs	CL=15pF, 9.6k to 115.2 kbps, duty19%
RXD output pulse width(MIR1) twRXDM1 200 434 800 ns CL=15pF, 0.576 Mbps, duty25%	RXD output pulse width(MIR1)	twRXDM1	200	434	800	ns	CL=15pF, 0.576 Mbps, duty25%
RXD output pulse width(MIR2) twRXDM2 100 217 500 ns C∟=15pF, 1.152 Mbps, duty25%	RXD output pulse width(MIR2)	twRXDM2	100	217	500	ns	C _L =15pF, 1.152 Mbps, duty25%
RXD output pulse width(FIR1) twRXDF1 85 125 165 ns C _L =15pF, 4 Mbps(125ns pulse)	RXD output pulse width(FIR1)	twRXDF1	85	125	165	ns	C _L =15pF, 4 Mbps(125ns pulse)
RXD output pulse width(FIR2) twRXDF2 195 250 290 ns CL=15pF, 4 Mbps(250ns pulse)	RXD output pulse width(FIR2)	twRXDF2	195	250	290	ns	C _L =15pF, 4 Mbps(250ns pulse)
Receiver latency time tRT - 100 200 μs	Receiver latency time	tRT	-	100	200	μs	

●Optical characteristics (Unless otherwise noted, Vcc=3V, VLEDVcc=3V, VIO=3V, Ta=25°C)

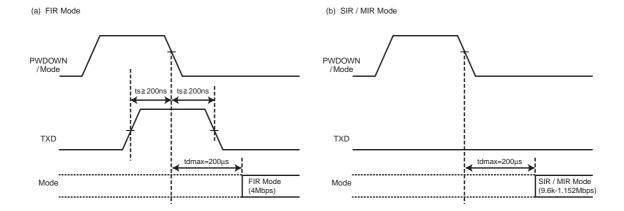
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Peak wave length	λР	880	890	900	nm	
Intensity	IE	25	100	_	mW/sr	-15 deg ≤ θ L ≤ 15 deg
Half-angle	θL / 2	±15	_	_	deg	
Rise time / Fall time	Tr / Tf	-	_	40	ns	10% to 90%
Optical over shoot		_	_	25	%	
Edge jitter	Tj	-25	-	25	ns	
Optical pulse width(MIR)	TweM	172	217	256	ns	tTXD=217ns
Optical pulse width(FIR)	TweF	115	125	135	ns	tTXD=125ns
Minimum irradiance in angular 1	Eemin1	_	_	8	μW/cm ²	-15 deg ≤ θ L ≤ 15 deg, ≤ 115.2kbps
Minimum irradiance in angular 2	Eemin2	_	_	20	μW/cm ²	-15 deg ≤ θ L ≤ 15 deg, > 115.2kbps
Maximum irradiance in angular	Eemax	500	_	_	mW/cm ²	-15 deg ≤ θ L ≤ 15 deg
Input half-angle	θD / 2	±15	-	_	deg	
Maximum emitting time	TLEDmax	16	48	120	μs	TXD=Vio

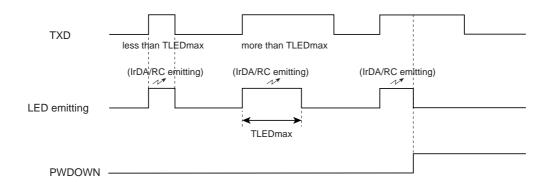
This product is not designed for protection against radioactive rays.
 This product dose not include laser transmitter.
 This product includes one PIN photo diode.
 This product dose not include optical load.

Timing chart

1. Mode Setting (SIR / MIR / FIR)

With RPM972-H14 there is a need for mode switch according to communication rate. For the mode setting, there are "PWDOWN/Mode" and "TXD". Please see below diagram for the set up of mode.




Fig. 1

2. Remote control transmitting

When remote control signal is input to the TXD terminal, remote control is transmitted.

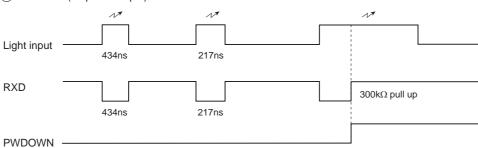
- 3. Timing chart (use example)
- (a) Emitting

When a pulse is inputted to TXD terminal, LED is emitting, and a signal is transmitted. But, when "H" condition follows TXD terminal, LED turns off the lights in the range of TLEDmax.

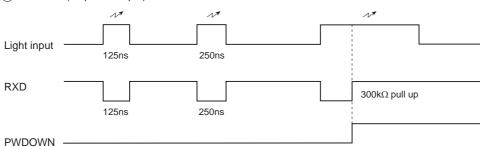
(b) Detecting

When it is received an optical signal, a signal outputs from RXD terminal at the following timing. It is outputted in the pulse width fixed at the time of SIR mode (9.6k to 115.2kbps).

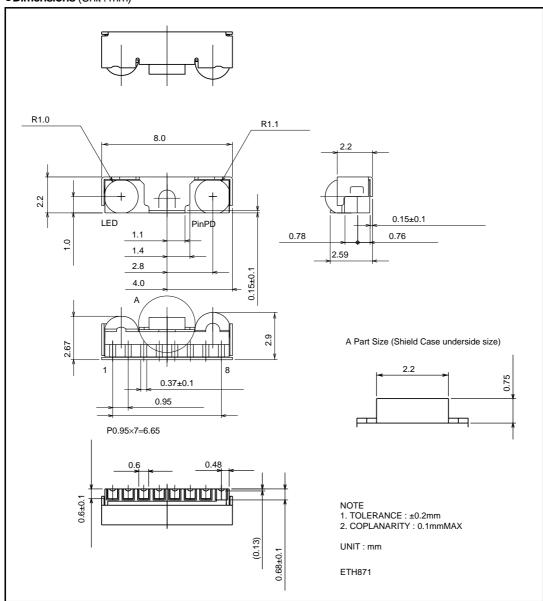
It is outputted in the pulse width which is the same as the input signal at the time of MIR mode (0.576M, 1.152Mbps) and FIR mode (4Mbps).

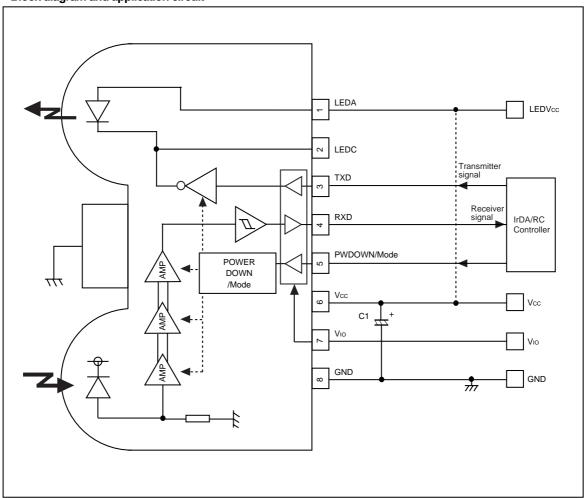

But, as for the pulse width of the input signal, it is based on IrDA Physical Layer Specification.

approximately 2.3µs



② MIR mode (output example)


PWDOWN


③ FIR mode (output example)

●Dimensions (Unit:mm)

●Block diagram and application circuit

Attached components

Part symbol Recommended value		Notice		
C1	6.8μF, Ceramic or tantalum Ex.)TCFGA1A685M8R(ROHM)	Bigger capacitance is recommended with much noise from power supply.		

Notes

1) VLEDV $_{CC}$ (1pin), V_{CC} (6pin) and V_{IO} (7pin)

• There is no problem even if it is supplied separately from each power supply such as a fix voltage power supply and a battery power supply. (Vio < Vcc + 0.3V)

But, use it in the recommendation power supply voltage range.

2) Caution in designing board lay-out

To get maximum potential from RPM972-H14, please keep in mind following instruction.

- The line of RXD (4pin) should be connected at backside via through hole close to RPM972-H14 pin lead. Better not to be close to photo diode side (8pin side).
- ⇒This is to minimize feedback supplied to photo diode from RXD.
- The parts which generate noise such as DC / DC converter should be one's placed at more than a radius of 1.0cm away from photo diode (8pin side).
- · As for C1 between 6 8 pins, it should be one's placed close to RPM972-H14.

3) Notes

- Please be sure to set up the TXD (3pin) input to be "L" (under 0.6V) except transmitting data. (For $< 90\mu$ sec. ON duty < 25%).
- · Powerdown current might increase if exposed by strong light (ex. direct sunlight) at powerdown mode.
- Please use by the signal format which is specified by IrDA Ver1.3 (Low Power). There might be on error if used by different signal format.

<Communication rate and pulse continuous time>

Signaling Rate		Modulation	Rate Tolerance % of Rate	Pulse Duration Minimum	Pulse Duration Nominal	Pulse Duration Maximum
9.6kbit/s		RZI	+/- 0.87	1.41µs	19.53μs	22.13µs
19.2kbit/s		RZI	+/- 0.87	1.41µs	9.77μs	11.07μs
38.4kbit/s		RZI	+/- 0.87	1.41µs	4.88µs	5.96μs
57.6kbit/s		RZI	+/- 0.87	1.41µs	3.26µs	4.34μs
115.2kbit/s		RZI	+/- 0.87	1.41µs	1.63µs	2.23μs
0.576Mbit/s		RZI	+/- 0.1	295.2ns	434.0ns	520.8ns
1.152Mbit	/s	RZI	+/- 0.1	147.6ns	217.0ns	260.4ns
4.0Mbit/s	single pulse	4PPM	+/- 0.01	115.0ns	125.0ns	135.0ns
	double pulse	4PPM	+/- 0.01	240.0ns	250.0ns	260.0ns

[·] Please pay attention to the lens carefully.

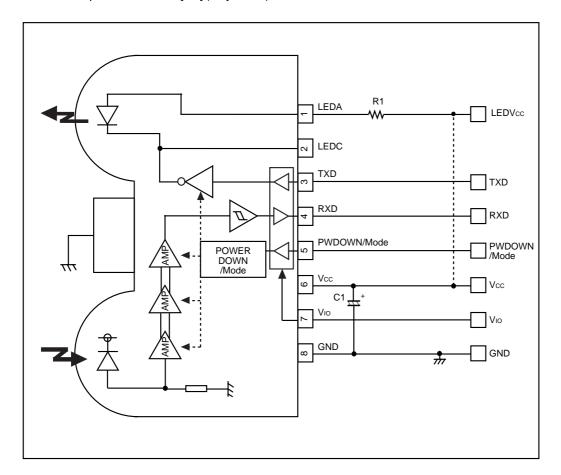
Dusts or scratch on the lens may effect the characteristics of product, please handle it with care.

4) Eye safe

• Eye safe is based on EN60825-1 (IEC60825-1 amendment 2), Class1 Eye safe.

5) Reference

• Please insert external resistance (R1, 1/4W) between LED anode terminal and VLEDVcc to limit the LED average consumption current for current limitation.


In case of using R1, formula is as follows:

LED resistance value : R1 [Ω], LED average consumption current : ILED [mA], Supply voltage : VLEDVcc [V], minimum necessary of irradiant intensity le1 [mW/sr]

$$\label{eq:R1} \begin{split} \text{R1} &= 110 \times (\text{VLEDVcc} - 1.45) \, / \, \text{le1} - 5 \, [\Omega] \\ \text{ILED} &= \text{Duty} \times (\text{VLEDVcc} - 1.36) \, / \, (\text{R1+4}) \, [\text{A}] \end{split}$$

Duty: LED duty at emitting

* Please set up to be ILED < 180[mA] (Duty \leq 25%).

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

