Power Products Division

Advance Information

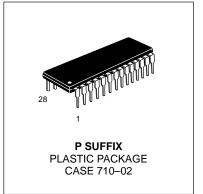
3-PHASE BRIDGE DRIVER

The MPIC2130 is a high voltage, high speed, power MOSFET and IGBT driver with three independent high side and low side referenced output channels for 3–Phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5 V CMOS or LSTTL outputs. A ground referenced operational amplifier provides an analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal is provided to indicate that an over—current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross—conduction. Propagation delays are matched to simplify use in high frequency applications.

The floating channels can be used to drive N-channel power MOSFET or IGBT's in the high side configuration which operate from 10 to 600 volts.

- Floating Channel Designed for Bootstrap Operation
- Fully Operational to +600 V
- Tolerant to Negative Transient Voltage
- dV/dt Immune
- Gate Drive Supply Range from 10 to 20 V
- Undervoltage Lockout for All Channels
- Over–current Shut Down Turns Off All Six Drivers
- Independent Half-bridge Drivers
- Matched Propagation Delay for All Channels
- Outputs Out of Phase with Inputs

PRODUCT SUMMARY


 $m V_{OFFSET}$ 600 V MAX $m I_{O+/-}$ 200 mA/420 mA

 V_{OUT} 10 – 20 V $t_{on/off}$ (typical) 675 & 425 ns

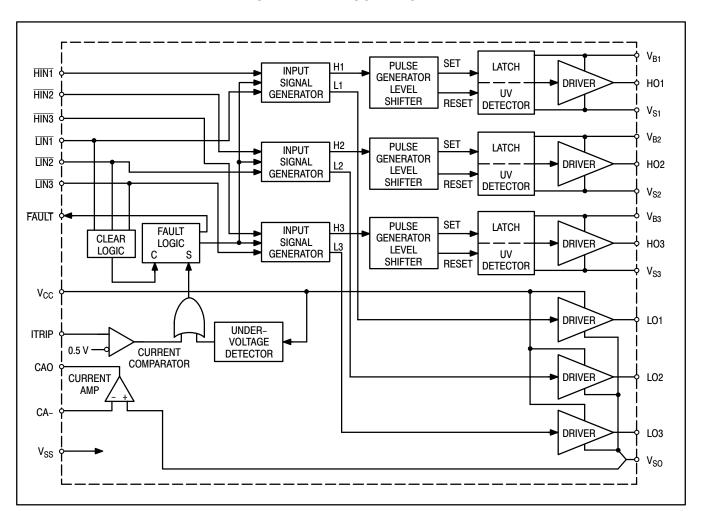
Deadtime (typical) 2.5 μs

MPIC2130

3-PHASE BRIDGE DRIVER

FN SUFFIX PLASTIC PACKAGE CASE 462-01

ORDERING INFORMATION


Device	Package
MPIC2130P	PDIP
MPIC2130FN	PLCC

This document contains information on a new product. Specifications and information herein are subject to change without notice.

SIMPLIFIED BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS}. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Rating	Symbol	Min	Max	Unit
High Side Floating Absolute Voltage	V _{B1,2,3}	-0.3	625	V_{DC}
High Side Floating Supply Offset Voltage	V _{S1,2,3}	V _{B1,2,3} –25	V _{B1,2,3} +0.3	
High Side Floating Output Voltage	V _{HO1,2,3}	V _{S1,2,3} -0.3	V _{B1,2,3} +0.3	
Fixed Supply Voltage	V_{CC}	-0.3	25	
Low Side Driver Return	V_{SO}	V _{CC} -0.3	V _{CC} +0.3	
Low Side Output Voltage	V _{LO1,2,3}	V _{SO} -0.3	V _{CC} +0.3	
Logic Input Voltage (HIN-, LIN-, & ITRIP)	V _{IN}	-0.3	V _{CC} +0.3	
Fault Output Voltage	FAULT-	-0.3	V _{CC} +0.3	
Amplifier Output Voltage	CAO	-0.3	V _{CC} +0.3	
Amplifier Inverting Input Voltage	CA-	-0.3	V _{CC} +0.3	
Allowable Offset Supply Voltage Transient	dV _S /dt	-	50	V/ns
*Package Power Dissipation @ T _A ≤ +25°C	P _D	_	1.5	Watt
Operating and Storage Temperature	T _j , T _{stg}	- 55	150	°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	-	83	°C/W
Lead Temperature for Soldering Purposes, 10 seconds	TL	_	260	°C

RECOMMENDED OPERATING CONDITIONS

The Input/Output logic timing Diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15 V differential.

High Side Floating Supply Absolute Voltage	V _{B1,2,3}	V _{S1,2,3} +10	V _{S1,2,3} +20	V
High Side Floating Supply Offset Voltage	V _{S1,2,3}	Note 1	V _{SO} +600	V
High Side Floating Output Voltage	V _{HO1,2,3}	V _{S1,2,3}	V _{B1,2,3}	V
Fixed Supply Voltage	V _{CC}	10	20	V
Low Side Driver Return	V _{SO}	- 5	5	V
Low Side Output Voltage	V _{LO1,2,3}	V _{SO}	V _{CC}	V
Logic Input Voltage (HIN-, LIN-, & ITRIP)	V _{IN}	V _{SS}	5	V
Fault Output Voltage	FAULT-	V _{SS}	V _{CC}	V
Amplifier Output Voltage	CAO	V _{SS}	5	V
Amplifier Inverting Input Voltage	CA-	V _{SS}	5	V
Ambient Temperature	T _A	-40	125	°C

Note 1: Logic operational for V_S of –5 V to +600 V. Logic state held for V_S of V_{SO} –5 V to V_{SO} – V_{BS} .

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15 V and V_{SO} = V_{SS} unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (HS1,2,3 & LS1,2,3). The VO and IO parameters are referenced to $V_{SO1,2,3}$ and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Logic "0" Input Voltage (OUT = LO)	V_{IH}	2.2	_	_	V
Logic "1" Input Voltage (OUT = HI)	V _{IL}	_	_	0.8	V
ITRIP Input Positive Going Threshold	V _{IT,TH+}	400	_	580	mV
High Level Output Voltage, V _{BIAS} –V _O @ V _{IN} = 0 V, I _O = 0 A	V _{OH}	-	-	100	mV
Low Level Output Voltage, V _O @ V _{IN} = 5 V, I _O = 0 A	_evel Output Voltage, V _O @ V _{IN} = 5 V, I _O = 0 A V _{OL}		_	100	mV
Offset Supply Leakage Current @ V _{B1,2,3} = V _{S1,2,3} = 600 V	I _{LK}	_	_	50	μΑ
Quiescent V _{BS} Supply Current @ V _{IN} = 0 V or 5 V	I _{QBS}	_	15	30	μΑ
Quiescent V _{CC} Supply Current @ V _{IN} = 0 V or 5 V	I _{QCC}	_	3.0	4.0	mA
Logic "1" Input Bias Current (OUT = HI) @ V _{IN} = 0 V	I _{IN+}	_	400	500	μΑ
Logic "0" Input Bias Current (OUT = LO) @ V _{IN} = 5 V	I _{IN} _	_	200	320	μΑ
"High" ITRIP Bias Current @ ITRIP = 5 V	I _{TRIP+}	_	75	150	μΑ
"Low" ITRIP Bias Current @ ITRIP = 0 V		_	_	100	nA
V _{BS} Supply Undervoltage Positive Going Threshold	V _{BSUV+}	8.0	_	9.2	V
V _{BS} Supply Undervoltage Negative Going Threshold	V _{BSUV}	7.6	_	8.8	V
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}	8.3	_	9.7	V
V _{CC} Supply Undervoltage Negative Going Threshold	V _{CCUV}	8.0	_	9.4	V
FAULT – Low On Resistance	R _{on,FLT}	-	55	75	Ω
Output High Short Circuit Pulsed Current @ V_{out} = 0 V, V_{in} = 0 V, PW \leq 10 μs	I _{O+}	200	250	-	mA
Output Low Short Circuit Pulsed Current @ V_{out} = 15 V, V_{in} = 5 V, PW \leq 10 μs	I _O _	420	500	-	mA
Amplifier Input Offset Voltage @ V _{SO} = CA- = 0.2	Vos	-	-	30	mV
CA- Input Bias Current @ CA- = 2.5 V	I _{CA} -	-	-	4.0	nA
Amplifier Common Mode Rejection Ratio @ V _{SO} = CA- = 0.1 V & 5 V	CMRR	60	80	-	dB

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise specified)

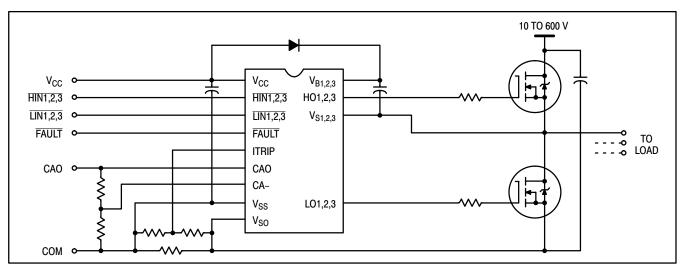
Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

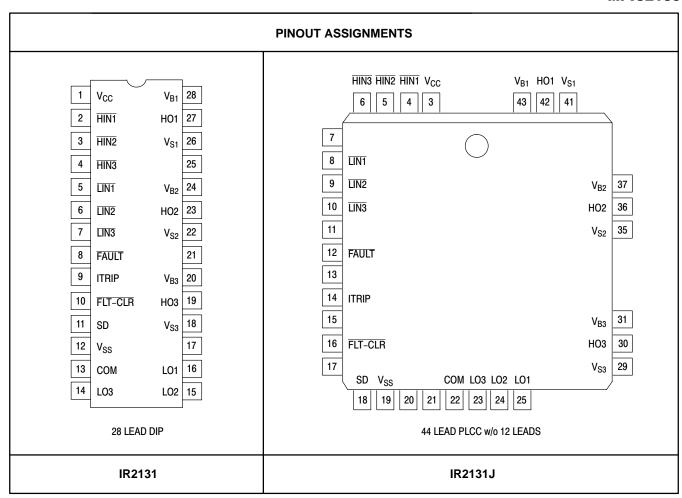
STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15 V and V_{SO} = V_{SS} unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (HS1,2,3 & LS1,2,3). The VO and IO parameters are referenced to $V_{SO1,2,3}$ and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Amplifier Power Supply Rejection Ratio @ V _{SO} = CA-=0.2 V, V _{CC} = 10 & 20 V	PSRR	55	75	_	dB
Amplifier High Level Output Voltage @ CA- = 0 V, V _{SO} = 1 V	$V_{OH,Amp}$	5.0	_	5.4	V
Amplifier Low Level Output Voltage @ CA- = 1 V, V _{SO} = 0 V	$V_{OL,Amp}$	-	-	20	mV
Amplifier Output Source Current @ CA- = 0 V, V _{SO} = 1 V, CAO = 4 V	I _{SRC,Amp}	2.3	4.0	_	mA
Amplifier Output Sink Current @ CA- = 1 V, V _{SO} = 0 V, CAO = 2 V	I _{SNK,Amp}	1.0	2.1	_	mA
Amplifier Output High Short Circuit Current @ CA- = 1 V, V _{SO} = 5 V, CAO = 0 V	I _{O+,Amp}	-	4.5	6.5	mA
Amplifier Output Low Short Circuit Current @ CA- = 5 V, V _{SO} = 0 V, CAO = 5 V	I _{O-,Amp}	-	3.2	5.2	mA

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)


Characteristic Symbol Min Typ Max Unit
--


DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15 V, $V_{SO1,2,3}$ = V_{SS} and C_L = 1000 pF unless otherwise specified. T_A = 25°C.

Turn–On Propagation Delay @ $V_{IN} = 0 \& 5 V$, $V_{S1,2,3} = 0 V$ to 600 V	t _{on}	500	675	850	ns
Turn–Off Propagation Delay @ $V_{IN} = 0 \& 5 V$, $V_{S1,2,3} = 0 V$ to 600 V	t _{off}	300	425	550	ns
Turn–On Rise Time @ $V_{IN} = 0 \& 5 V$, $V_{S1,2,3} = 0 V$ to 600 V	t _r	_	80	125	ns
Turn–Off Fall Time @ $V_{IN} = 0 \& 5 V$, $V_{S1,2,3} = 0 V$ to 600 V	t _f	_	35	55	ns
ITRIP to Output Shutdown Propagation Delay @ V_{IN} , $V_{ITRIP} = 0 \& 5 V$	t _{itrip}	400	_	920	ns
ITRIP Blanking Time @ ITRIP = 1 V	t _{bl}	_	400	_	ns
ITRIP to FAULT- Propagation Delay @ V _{IN} , V _{ITRIP} = 0 & 5 V	t _{flt}	335	_	845	ns
Input Filter Time (all six inputs) @ V _{IN} = 0 & 5 V	t _{flt,in}	_	310	_	ns
LIN1,2,3 to FAULT Clear Time @ V _{IN} , V _{ITRIP} = 0 & 5 V	t _{fltclr}	6.0	_	12	μs
Deadtime, LS Turn–Off to HS Turn–On & HS Turn–Off to LS Turn–On @ V _{IN} = 0 & 5 V	DT	1.3	-	3.7	μs
Amplifier Slew Rate (Positive)	SR+	4.4	6.2	-	V/μs
Amplifier Slew Rate (Negative)	SR-	2.4	3.2	-	V/μs

TYPICAL CONNECTION

LEAD DEFINITIONS

Symbol	Lead Description
HIN1,2,3	Logic Inputs for High Side Gate Driver Outputs (HO1,2,3), Out of Phase
LIN1,2,3	Logic Inputs for Low Side Gate Driver Outputs (LO1,2,3), Out of Phase
FAULT-	Indicates Over-current, or Undervoltage Lockout (Low Side) has Occurent, Negative Logic
V _{CC}	Logic and Low Side Fixed Supply
ITRIP	Input for Over–current Shut Down
CAO	Output of Current Amplifier
CA-	Negative Input of Current Amplifier
V _{SS}	Logic Ground
V _{B1,2,3}	High Side Floating Supplies
HO1,2,3	High Side Gate Drive Outputs
V _{S1,2,3}	High Side Floating Supply Returns
LO1,2,3	Low Side Gate Drive Outputs
V _{SO}	Low Side Return, Positive Input of Current Amplifier

MPIC2130

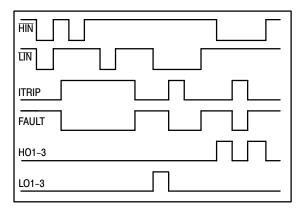


Figure 1. Input / Output Timing Diagram

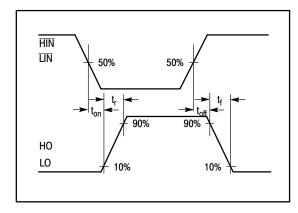


Figure 2. Switching Time Waveform Definitions

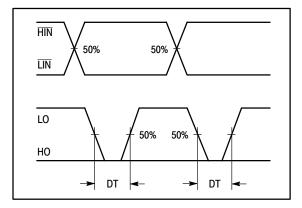
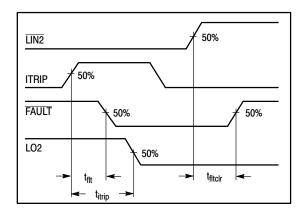
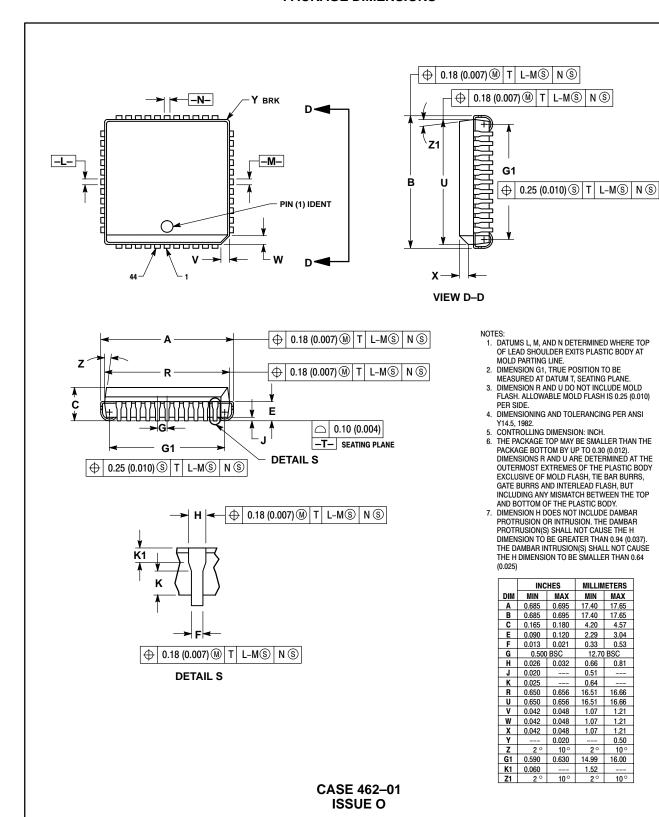
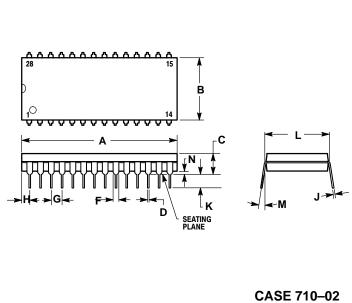


Figure 3. Deadtime Waveform Definitions


Figure 4. Overcurrent Shutdown Waveform Definitions

1.21

10°

PACKAGE DIMENSIONS

NOTES:

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.

 2. DIMENSION L TO CENTER OF LEADS WHEN
- FORMED PARALLEL.

 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	36.45	37.21	1.435	1.465
В	13.72	14.22	0.540	0.560
С	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.10	0 BSC
Н	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	15.24	BSC	0.600	BSC
M	0°	15°	0 °	15°
N	0.51	1.02	0.020	0.040

ISSUE B

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application. Buyer shall indeemify and hold Motorola or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912: Phoenix. Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MPIC2130/D